LS-L100

A Roving Transport Category Heavy-Lift Aerial-Crane

The LS-L100 is an omni-directional lighter-than-air (LTA) transport category airship to fulfill needed aerial-crane and general freight transport duties, which may be in marine environments or remote regions without infrastructure. It has long flight endurance and payload may be traded for customer systems with unbroken time on duty (perhaps months). It provides a stable platform for sensitive large payloads up to 50 tonne (50,000 kg). Operators may expect a practical, easily-maintained aircraft with relatively low acquisition and operating costs, allowing them to expand their services and create new markets.

Swappable under-slung units enable quick configuration changes; for example, from freighter to a sky station. The design allows quick setup and deployment (less than 5 days out of the box), easy to manage on the ground (10 person setup, launch and moor), maintenance and operation by a single pilot plus 3 crew (relief pilot/crane operator and 2 systems engineers for in-flight support).

Key Aspects:

• 6 degree of freedom control with cycloidal propellers and a vertical thrust system
• Omni-directional dirigible motorised gas balloon for heavy-lift duties
• Low drag variable geometry lenticular aerostat for aero-static/dynamic lift
• Quiet operation, routinely flown as a silent steady un-powered free balloon
• Stable long endurance that is environmentally friendly (low emissions)
• VTOL style manned operation – balloon/airship and helicopter methods
• Doesn’t need stabilisers, elevators or rudders – controlled with thrust
• Fixed when moored and able to be cloaked at low level for storm protection
• Compact (smaller than classic airships) able to access small sites wherever
• May be assembled and maintained outdoors, but skirt protection recommended
• A resilient aircraft, able to operate in normal weather that most aircraft also would fly in
• Designed for setup and operation at small level sites anywhere without a mast or runways

Duties: designed for ad-hoc aerial crane duties and cargo transport almost anywhere with under-slung payloads up to 50 tonne (50,000 kg), as illustrated above & below. Light transport payload units also were designed, as illustrated right, for general freight haulage – able to be picked up and delivered without grounding.

Note similarity to the LS-L100’s pod.
Payload placement or pickup involves ballast exchange to maintain force equilibrium between buoyancy and LS-L100 gross weight aided by vertical thrust. Ballast may be a variety of things but, if not available, a fixed quantity of gas may be quickly vented to reduce buoyancy when setting payloads down.

General specification:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas fill / Overall aerostat volume</td>
<td>160,000 m3 (5,650,300 ft3) / 242,930 m3 (8,579,000 ft3)</td>
</tr>
<tr>
<td>Aerostat maximum diameter</td>
<td>100 m (328 ft)</td>
</tr>
<tr>
<td>Aerostat height at sea level / pressure altitude</td>
<td>30 m (98.4 ft) / 40 m (131.2 ft)</td>
</tr>
<tr>
<td>Overall SkyPorter height</td>
<td>82.35 m (270.2 ft)</td>
</tr>
<tr>
<td>Disposable load / Payload</td>
<td>75,000 kg (165,350 lb) / 50,000 kg (110,230 lb)</td>
</tr>
<tr>
<td>Max and cruise airspeeds</td>
<td>55 Kn (101.9 km/h) and 45 Kn (83.3 km/h)</td>
</tr>
<tr>
<td>Max wind speed - launch/capture</td>
<td>25 Kn (46.3 km/h) gusting to 30 Kn (55.6 km/h)</td>
</tr>
<tr>
<td>Max wind speed - low moored</td>
<td>80 Kn (148.2 km/h)</td>
</tr>
<tr>
<td>Max wind speed - low moored & cloaked</td>
<td>100 Kn (185.2 km/h)</td>
</tr>
<tr>
<td>Cruise altitude</td>
<td>600 m (2000 ft) AMSL</td>
</tr>
<tr>
<td>Pressure altitude (ceiling)</td>
<td>2500 m (8200 ft) AMSL</td>
</tr>
<tr>
<td>Endurance - continuous cruise power</td>
<td>48 h at cruise airspeed</td>
</tr>
<tr>
<td>Endurance – un-powered</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Range - continuous cruise power</td>
<td>4000 km (2485 miles)</td>
</tr>
<tr>
<td>Range - floating with wind</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Power – max airspeed</td>
<td>TBD kW (TBD hp) Solar & Diesel producing electricity</td>
</tr>
<tr>
<td>Power – cruise airspeed</td>
<td>TBD kW (TBD hp)</td>
</tr>
<tr>
<td>Propulsion</td>
<td>Electrically driven cycloidal propellers</td>
</tr>
</tbody>
</table>

Notes: Following prototype production and shake down, confirmation of these estimates will be possible with likely improvements. The LS-L100 will be developed to meet Transport Category requirements.

Storm Protection

It’s recommended that operators also acquire an annular skirt and a Dome for respectively away field and base maintenance severe weather protection, as shown left and right. These are both compatible light temporary structures needing ballast or anchors instead of foundations to hold them. Launch/capture is vertical, directly from either base; obviating cross field ground movement. No runways, mast or swinging awkwardly in the breeze – just simple common sense!

Current status

The concept design is complete, so ready for development. Development plans have been scoped to a first level sufficient for investor due diligence.

Contact as below.
LS-L100
A Roving Transport Category Heavy-Lift Aerial-Crane
ADDENDUM

Cycle of Operations
The following illustrations show generally how the LS-L100 would be operated:

A) Secure mooring against severe weather at the operator’s base

1 Cloaked
2 Low Moored
3 Mid-height Moored

B) Preparation and flight – launched directly from the base vertically

4 High Moored
5 Pre-launch
6 Free Flight at Pressure Height

C) Extraction, transport and delivery operations to suit customer needs and circumstances

7 Small Site Access
8 Payload Transport
9 Delivery without Load Exchange

D) Base return for replenishment (gas, fuel and ballast), captured directly without fuss

10 Free Flight at Altitude
11 Post Capture
12 Moored & Re-gassed

Naturally, if the delivery site is arranged with ballast for load exchange when the payload is set down, then gas venting may be obviated.
LS-L100
A Roving Transport Category Heavy-Lift Aerial-Crane

Further Information

Command & Control Unit - Cushioned ground contact

Command & Control Unit – General working arrangements

Aerostat Installations - Cycloidal Propellers for rapid thrust vectoring through 360°, plus Apex and Base Housings for crew and systems’ needs
LS-L100
A Roving Transport Category Heavy-Lift Aerial-Crane

Pod – General Arrangement – The LS-L100’s working centre

A bird’s eye view looking down on the aerostat

There are many ways to pick ballast up and it may be many things, but water is convenient.